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Abstract 
This paper establishes a framework for formal 

comparisons of several leading optimization algorithms, 
establishing guidance to practitioners for when to use or not 
use a particular method. The focus in this paper is five 
general algorithm forms: random search, simultaneous 
perturbation stochastic approximation, simulated annealing, 
evolutionary strategies, and genetic algorithms. We 
summarize the available theoretical results on rates of 
convergence for the five algorithm forms and then use the 
theoretical results to draw some preliminary conclusions on 
the relative efficiency. Our aim is to sort out some of the 
competing claims of efficiency and to suggest a structure 
for comparison that is more general and transferable than 
the usual problem-specific numerical studies.  
Keywords: Stochastic optimization; rate of convergence; 
random search; simultaneous perturbation stochastic 
approximation (SPSA); simulated annealing; evolutionary 
computation; genetic algorithms. 1 

1. INTRODUCTION 
To address the shortcomings of classical deterministic 

algorithms, a number of powerful optimization algorithms 
with embedded randomness have been developed. The 
population-based methods of evolutionary computation are 
only one class among many of these available stochastic 
optimization algorithms. Hence, a user facing a challenging 
optimization problem for which a stochastic optimization 
method is appropriate meets the daunting task of 
determining which algorithm is appropriate for a given 
problem. This choice is made more difficult by some 
dubious claims that have been made about some popular 
algorithms. An inappropriate approach may lead to a large 
waste of resources, both from the view of wasted efforts in 
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implementation and from the view of the resulting 
suboptimal solution to the optimization problem of interest. 

Hence, there is a need for objective analysis of the 
relative merits and shortcomings of leading approaches to 
stochastic optimization. This need has certainly been 
recognized by others, as illustrated in recent conferences on 
evolutionary computation, where numerous sessions are 
devoted to comparing algorithms. Nevertheless, virtually all 
comparisons have been numerical tests on specific 
problems. Although sometimes enlightening, such 
comparisons are severely limited in the general insight they 
provide. Some comparisons for noisy evaluations of a 
simple spherical loss function are given in Arnold (2002, 
Chap. 6); however, some of the competitors were 
implemented in non-standard forms, making the results 
difficult to interpret for an analyst using a more 
conventional implementation. Spall (2003) also has a 
number of comparisons (theoretical and numerical) for the 
cases of noise-free and noisy loss evaluations.  On the other 
end of the spectrum are the “No Free Lunch Theorems” 
(Wolpert and McReady, 1997), which simultaneously 
consider all possible loss functions and thereby draw 
conclusions that have limited practical utility since one 
always has at least some knowledge of the nature of the loss 
function being minimized.  

Our aim in this paper is to lay a framework for a 
theoretical comparison of efficiency applicable to a broad 
class of practical problems where some (incomplete) 
knowledge is available about the nature of the loss 
function. We will consider five basic algorithm forms—
random search, simultaneous perturbation stochastic 
approximation (SPSA), simulated annealing (SAN), and 
two forms of evolutionary computation (evolution strategy 
and genetic algorithms). The basic optimization problem 
corresponds to finding an optimal point θ*: 

θ* = , arg min ( )L
θ∈Θ

θ
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where L(θ) is the loss function to be minimized, Θ is the 
domain over which the search will occur, and θ is a  
p-dimensional (say) vector of parameters. We are mainly 
interested in the case where θ* is a unique global minimum. 

Although stochastic optimization approaches other than 
the five above exist, we are restricting ourselves to the five 
general forms in order to be able to make tangible progress 
(note that there are various specific implementations of 
each of these general algorithm forms). These five 
algorithms are general-purpose optimizers with powerful 
capabilities for serious multivariate optimization problems. 
Further, they have in common the requirement that they 
only need measurements of the objective function, not 
requiring derivative information (gradient or Hessian) for 
the loss function.  

One might ask whether questions of relative efficiency 
are relevant in light of the “no free lunch (NFL)” theorems 
of Wolpert and Macready (1997) and others. The NFL 
theorems state, in essence, that the expected performance of 
any pair of optimization algorithms across all possible 
problems is identical. In practice, of course, one is not 
interested in solving “all possible problems,” as there is 
usually some prior information about the problems of 
interest and this prior information will affect the algorithm 
implementation. Hence, the NFL results may not 
adequately reflect the performance of candidate algorithms 
as they are actually applied. In other words, some 
algorithms do work better than others on problems of 
interest. Nevertheless, the NFL results are an important 
backdrop against which to view the results here, providing 
limits on the extent to which one algorithm can be claimed 
as “better” than another. 

2. SIMPLE GLOBAL RANDOM SEARCH 
We first establish a rate of convergence result for the 

simplest random search method where we repeatedly 
sample over the domain of interest, Θ ⊆ Rp. This can be 

done in recursive form or in “batch” (non-recursive) form 
by simply laying down a number of points in Θ and taking 
as our estimate of θ* that value of θ yielding the lowest L 
value.  

To evaluate the rate, let us specify a “satisfactory 
region” S(θ*) representing some neighborhood of θ* 
providing acceptable accuracy in our solution (e.g., S(θ*) 
might represent a hypercube about θ* with the length of 
each side representing a tolerable error in each coordinate 
of θ). An expression related to the rate of convergence of 
the above simple random search algorithm is then given by  

 P( ∈S(θkθ̂ *)) = 1 − [1 − P(θnew(k) ∈ S(θ*)]k  (2.1) 

We will use this expression in Section 7 to derive a 
convenient formula for comparison of efficiency with other 
algorithms.  

3. SIMULTANEOUS PERTURBATION 
STOCHASTIC APPROXIMATION 
The next algorithm we consider is SPSA. This algorithm 

is designed for continuous variable optimization problems. 
Unlike the other algorithms here, SPSA is fundamentally 
oriented to the case of noisy function measurements and 
most of the theory is in that framework. This will make for 
a difficult comparison with the other algorithms, but 
Section 7 will attempt a comparison nonetheless. The SPSA 
algorithm works by iterating from an initial guess of the 
optimal θ, where the iteration process depends on a highly 
efficient “simultaneous perturbation” approximation to the 
gradient g(θ) ≡ ∂L(θ)/∂θ .  

Assume that measurements y(θ) of the loss function are 
available at any value of θ:  

y(θ) = L(θ) + noise . 
For example, in a Monte Carlo simulation-based 

optimization context, L(θ) may represent the mean response 
with input parameters θ, and y(θ) may represent the 
outcome of one simulation experiment at θ. In some 
problems, exact loss function measurements will be 
available; this corresponds to the noise = 0 setting (and in 
the simulation example, would correspond to a 
deterministic⎯non-Monte Carlo⎯simulation). Note that 
no direct measurements (with or without noise) of the 
gradient of L(θ) are assumed available.  

The SPSA procedure is in the general recursive SA 
form: 

  , (3.1) )ˆ(ˆˆˆ
1 kkkkk ga θ−θ=θ +

where  is the estimate of the gradient g(θ) at the 

iterate  based on the above-mentioned measurements of 

the loss function and a

)ˆ(ˆ kkg θ

kθ̂
k > 0 is a “gain” sequence. This 

iterate can be shown to converge under reasonable 
conditions (e.g., Spall, 1992, and Dippon and Renz, 1997, 
for local convergence; Maryak and Chin, 2001, for global 
convergence). The essential basis for efficiency of SPSA in 
multivariate problems is due to the gradient approximation, 
where only two measurements of the loss function are 
needed to estimate the p-dimensional gradient vector for 
any p; this contrasts with the standard finite difference 
method of gradient approximation, which requires 2p 
measurements. 

Most relevant to the comparative analysis goals of this 
paper is the asymptotic distribution of the iterate. This was 
derived in Spall (1992), with further developments in Chin 
(1997), Dippon and Renz (1997), and Spall (2000). 
Essentially, it is known that under appropriate conditions, 

 kβ/2( − θkθ̂ *) N(µ, Σ)  as k → ∞ , (3.2) ⎯⎯ →⎯dist

 



where β > 0 depends on the choice of gain sequences (ak 
and ck), µ depends on both the Hessian and the third 
derivatives of L(θ) at θ* (note that in general, µ ≠ 0 in 
contrast to many well-known asymptotic normality results 
in estimation), and Σ depends on the Hessian matrix at θ* 
and the variance of the noise in the loss measurements. 
Given the restrictions on the gain sequences to ensure 
convergence and asymptotic normality, the fastest 
allowable value for the rate of convergence of to θkθ̂ * is 

k−1/3. This contrasts with the fastest allowable rate of k−1/2 
for gradient-based algorithms such as Robbins-Monro SA.  

Unfortunately, (3.2) is not directly usable in our 
comparative studies here since the other three algorithms 
being considered here appear to have convergence rate 
results only for the case of noise-free loss measurements. 
The authors are unaware of any general asymptotic 
distribution result for the noise-free case (note that it is not 
appropriate to simply let the noise level go to zero in (3.2) 
in deriving a result for the noise-free case; it is likely that 
the rate factor β will also change if an asymptotic 
distribution exists). Some partial results, however, are 
available that are related to the rate of convergence. 
Gerencsér (1999) established that the moments 

qq
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⎝
⎛ θ−θ converge to zero at a rate of k−1/2 for 

any q > 0, when ak has the standard 1/k decay rate. More 
recently, Gerencsér and Vágó (2000) established that the 
noise-free SPSA algorithm has a geometric rate of 
convergence when constant gains ak = a are used. In 
particular, for functions having bounded third derivatives, 
they show for sufficiently small a, 

ˆ
limsup 1 a.s.

k

kk η

∗

→∞

θ − θ
=  

for some 0 < η < 1. Gerencsér and Vágó (2000) go further 
for quadratic loss functions by specifying η in terms of a 
and the Hessian matrix of L. Unfortunately, even in the 
quadratic case, η is not fully specified in terms of quantities 
associated with L and the algorithm itself (i.e., η depends 
on unknown constants).  

4. SIMULATED ANNEALING ALGORITHMS 
The SAN method (Metropolis et al., 1953; Kirkpatrick 

et al., 1983) was originally developed for optimization over 
discrete finite sets. The Metropolis SAN method produces a 
sequence that converges in probability to the set of global 
minima of the loss function as Tk, the temperature, 
converges to zero. 

Gelfand and Mitter (1993) present a SAN method for 
continuous parameter optimization. They obtained discrete-
time recursions (which are similar to a stochastic 
approximation algorithm) for Metropolis-type SAN 

algorithms that, in the limit, optimize continuous parameter 
loss functions.  

Furthermore, like SPSA, SAN has an asymptotic 
normality result (but unlike SPSA, this result applies in the 
noise-free case). Let H(θ*) denote the Hessian of L(θ) 
evaluated at θ* and let Ip denote the p × p identity matrix. 
Yin (1999) showed that for bk = (b/(kγlog (k1−γ  + B0) )1/2, 

[log (k1−γ  + B0) ]1/2( ˆ
kθ -  θ*)  → N(0, Σ) in distribution, 

where SH + HTS + (b/a)I = 0. 

5. EVOLUTIONARY COMPUTATION: 
EVOLUTIONARY STRATEGIES 
There are three general approaches in evolutionary 

computation (EC), namely Evolutionary Programming 
(EP), Evolutionary Strategies (ES) and Genetic Algorithms 
(GA). All three approaches work with a population of 
candidate solutions and randomly alter the solutions over a 
sequence of generations according to evolutionary 
operations of competitive selection, mutation and 
sometimes recombination (reproduction). The fitness of 
each population element to survive into the next generation 
is determined by a selection scheme based on evaluating 
the loss function for each element of the population. The 
selection scheme is such that the most favorable elements 
of the population tend to survive into the next generation 
while the unfavorable elements tend to perish. 

The principle differences in the three approaches are the 
selection of evolutionary operators used to perform the 
search and the computer representation of the candidate 
solutions. EP uses selection and mutation only to generate 
new solutions. While both ES and GA use selection, 
recombination and mutation, recombination is used more 
extensively in GA. A GA traditionally performs 
evolutionary operations using binary encoding of the 
solution space, while EP and ES perform the operations 
using real-coded solutions. The GA also has a real-coded 
form and there is some indication that the real-coded GA 
may be more efficient and provide greater precision than 
the binary-coded GA. The distinction among the three 
approaches has begun to blur as new hybrid versions of EC 
algorithms have arisen. 

Global convergence results can be given for a broad 
class of problems, but the same cannot be said for 
convergence rates. Both Beyer (1995) and Rudolph 
(1997a) examine ES algorithms that include selection, 
mutation and recombination. The function analyzed in both 
cases is the classic spherical fitness function L(θ) = ||θ||2 
whose exact solution is of course known. Convergence 
rates based on the spherical fitness function are somewhat 
useful, if it is assumed that the sphere approximates a local 
basin of attraction. A number of other convergence rate 
results are also available for that fitness function, for 
example Qi and Palmeiri (1994) for real-valued GA.  The 
most practically useful convergence rates for EC algorithms 
seem to be for the class of strongly convex fitness 



functions. The following theorem due to Rudolph (1997b) 
is an application of a more general result by Rappl (1989). 
The theorem will be the starting place for the specific 
convergence rate result that will be used for comparison in 
Section 7. 

An EC algorithm has a geometric rate of convergence if 
and only if E[ −L(θ*

kL *)] = O(ηk) where η ∈ (0, 1) is called 
the convergence rate. Under conditions, the convergence 
rate result for a (1, λ)-ES using only selection and mutation 
on a (K, Q)-strongly convex fitness function is geometric 
with a rate of convergence  

η = (1 – Q2
, pMλ

2) 

where Q is a constant, =  E[ΒpM ,λ λ:λ]>0, and where Βλ:λ  

denotes the maximum of λ independent identically 
distributed Beta random variables. The computation of Mλ,p 
is complicated since it depends on both the number of 
offspring λ and the problem dimension p. Asymptotic 
approximations are available and will be shown next. 
Assuming p is fixed and λ→ ∞ then  ≈  (2 ppM ,λ

−1log 

λ)1/2. To extend this convergence rate from a (1, λ)-ES to a 
(Npop, λ)-ES, note that each of the Npop parents generate 
λ/Npop offspring. Then the convergence rate for the 
(Npop, λ)-ES where offspring are only obtained by mutation 
is  

η  ≤ [1 – (2p−1log(λ/Npop))/Q2] 

for (K, Q)-strongly convex functions. 

6. EVOLUTIONARY COMPUTATION: GENETIC 
ALGORITHMS 
As discussed in Stark and Spall (2001), it is possible to 

cast the GA in the framework of Markov chains. This 
allows for a rate of convergence analysis. Consider a GA 
with a population size of N. Further, suppose that each 
population element is a binary string of length b bits. 
Hence, there are 2b possible strings for an individual 
population element. Then the total number of possible 
populations is given by 

pop
( 2 1)
(2 1)! !

b

b
NN

N
!+ −

≡
−

. 

It is possible to construct a Markov transition matrix Π that 
provides the probability of transitioning from one 
population of size N to another population of the same size. 
This transition matrix is Npop × Npop. An individual element 
in the transition matrix can be computed according to the 
formulas in Stark and Spall (2001) (see also Suzuki, 1995). 
These elements depend in a non-trivial way on the 
population size, crossover rate, mutation rate, and number 
of elements considered “elite.”   

Of primary interest in analyzing the performance of GA 
algorithms using Markov chains is the probability of 
obtaining a population that contains the optimum ∗θ . Let 
πk be an N × 1 vector having jth component, πk(j), equal to 
the probability that the kth generation  will result in 
population j. From basic Markov chain theory, 

T
kπ  = 1

T
k−π Π  =  0

T kπ Π

where π0 is an initial probability distribution.  
The stationary distribution of the GA is then given by  

0lim limT T T
k

k k→∞ →∞

kπ ≡ π = π Π . 

Further, under standard ergodicity assumptions for 
Markov chains, π  satisfies T Tπ = π Π .  This equation 

provides a mechanism for solving directly for the stationary 
distribution (e.g., Iosifescu, 1980, pp. 123−124).  

Unfortunately, from a practical view, the Markov chain 
approach has a significant deficiency. The dimension N 
grows very rapidly with increases in the number of bits b 
and/or the population size N. A perhaps more intuitive 
estimate of the size of Npop can be obtained by Stirling’s 
Approximation as follows: 

2 1 1/ 2

pop
2 1 1 12 1 1

2 1 2 1

bNb

b b
NN

N N

−⎛ ⎞− ⎛ ⎞ ⎛
≈ π + + +⎜ ⎟ ⎜ ⎟ ⎜⎜ ⎟ ⎝ − ⎠ ⎝ − ⎠⎝ ⎠

⎞
⎟  

Thus far, our analysis using the above approach has been 
restricted to scalar θ systems (requiring fewer bits b than a 
multivariate system) and low Npop. 

7. COMPARATIVE ANALYSIS 
7.1 Problem Statement and Summary of Efficiency 

Theory for the Five Algorithms  
This section uses the specific algorithm results in 

Sections 2 to 6 above in drawing conclusions on the 
relative performance of the five algorithms. There are 
obviously many ways one can express the rate of 
convergence, but it is expected that, to the extent they are 
based on the theory outlined above, the various ways will 
lead to broadly similar conclusions. We will address the 
rate of convergence by focusing on the question:  

With some high probability 1− ρ (ρ a small number), 
how many L(⋅) function evaluations, say n, are needed 
to achieve a solution lying in some “satisfactory set” 
S(θ*) containing θ*?   
With the random search algorithm in Section 2, we have 

a closed form solution for use in questions of this sort while 
with the SPSA, SAN, and EC algorithms of Sections 3 
through 5, we must apply the existing asymptotic results, 
assuming that they apply to the finite-sample question 
above. For the GA, there is a finite sample solution using 
the Markov chain approach. For each of the five 
algorithms, we will outline below an analytical expression 

 



useful in addressing the question. After we have discussed 
the analytical expressions, we present a comparative 
analysis in a simple problem setting for varying p. 

Random Search  
We can use (2.1) to answer the question above. Setting 

the left-hand side of (2.1) to 1 − ρ and supposing that there 
is a constant sampling probability P* = P(θnew(k) ∈ S(θ*)) ∀ 
k, we have 

 
)1(log

log
*P

n
−
ρ

= . (7.1) 

Simultaneous Perturbation Stochastic Approximation 
From the fact that SPSA uses two L(θ*) evaluations per 

iteration, the value n to achieve the desired probability for 

kθ̂ ∈ S(θ*) is then 
3)(22 ⎟

⎠
⎞

⎜
⎝
⎛

δ
σ

=
s
pdn  

where from standard N(0, 1) distribution tables, there exists 
a displacement factor, say d(p), such that the probability 
contained within ± d(p) units contains probability amount 
(1 − ρ)1/p. We are interested in the k such that 2d(p)σ/k1/3 = 
δs = (the common length of a side in a p-fold 

hypercube). 

−+ − ii ss

Simulated Annealing 
The value n to achieve the desired probability for 
∈S(θkθ̂ *) is 

21 2 ( )log .
1

d pn
s

σ⎛ ⎞= ⎜ ⎟− γ δ⎝ ⎠
 

Evolutionary Strategy 
As discussed in Section 6, the rate-of-convergence 

results for algorithms of the evolutionary computation type 
are not as well developed as for the other three algorithms 
of this paper. Theorem 6.1 gives a general bound on 
E[L( ) − L(θkθ̂ *)] for application of a (N, λ)-ES form of EC 
algorithm to strongly convex functions. A more explicit 
form of the bound is available for the (1, λ)-ES. 
Unfortunately, even in the optimistic case of an explicit 
numerical bound on E[L( ) − L(θkθ̂ *)], we cannot readily 

translate the bound into a probability calculation for ∈ 
S(θ

kθ̂
*), as used above (and, conversely, the asymptotic 

normality result on  for SPSA and SAN cannot be 

readily translated into one on L( ) since ∂L/∂θ = 0 at 
θ

kθ̂

kθ̂
*⎯see, e.g., Serfling, 1980, pp. 122−124—although 

Lehmann, 1983, pp. 338−339 suggests a possible means of 
coping with this problem via higher-order expansions). So, 
in order to make some reasonable comparison, let us 
suppose that we can associate a set S(θ*) with a given 
deviation from L(θ*), i.e., S(θ*) = S(θ*, ε) ={θ: L( ) − 
L(θ

kθ̂
*) ≤ ε} for some prespecified tolerance ε > 0. As 

presented in Rudolph (1997b), E[L( ) − L(θ)]≤ ckθ̂ k for 
sufficiently large k, where c is the convergence rate in 
Section 6. Then by Markov’s inequality, 

1 − P( ∈S(θkθ̂ *)) ≤ 
ε

θ−θ *)]()ˆ([ LLE k  ≤ 
ε

kc
,     (7.2) 

indicating that P( ∈S(θkθ̂ *)) is bounded below by the ES 

bounds mentioned in Section 5. 
The full version of the paper employs Markov’s 

inequality and the bound in Rudolph (1977b) to show that 
there are λ evaluations of the fitness function for each 
generation k so that n = λk, where 

k = 

⎥
⎦

⎤
⎢
⎣

⎡
λ−

ε−ρ

)/log(21log

)/1log( log

2 N
pQ

. 

Genetic Algorithm 
As mentioned in Section 6, while the GA has a relatively 

clean theory that applies in both finite and asymptotic 
samples, there are significant challenges in computing the 
elements of the Markov transition matrix Π. The number of 
possible states—corresponding to the number N of possible 
populations—grows extremely rapidly with the number of 
population elements N or the number of bits b. The 
computation of the Npop × Npop transition matrix Π quickly 
overwhelms even the most powerful current personal 
computers.  

Nevertheless, in principle, the Markov structure is 
convenient for establishing a convergence rate for the GA. 
The full version of the paper provides value for n. 

7.2 Application of Convergence Rate Expressions for 
Varying p 

We now apply the results above to demonstrate relative 
efficiency for varying p. Because the GA result is 
computationally explosive as p gets larger (requiring a 
larger bit string length and/or population size), we restrict 
the comparison here to the four algorithms: random search, 
SPSA, SAN and ES. Let Θ = [0, 1]p (the p-dimensional 
hypercube with minimum and maximum θ values of 0 and 
1 for each component). We want to guarantee with 
probability 0.90 that each element of θ is within 0.04 units 
of the optimal. Let the (unknown) true θ, θ*, lie in (0.04, 
0.96)p. The individual components of θ* are . Hence,  *

iθ



* * * * *
1 1 2 2

* *

( ) [ 0.04, 0.04] [ 0.04, 0.04] ...

[ 0.04, 0.04] .p p

S θ = θ − θ + × θ − θ + ×

× θ − θ + ⊂ Θ
 

Table 7.1 is a summary of relative efficiency for the 
setting above for p = 2, 5, and 10; the efficiency was 
normalized so that all algorithms performed equally at  
p = 1, as described below. The numbers in Table 7.1 are the 
ratios of the number of loss measurements for the given 
algorithm over the number for the best algorithm at the 
specified p; the highlighted values 1.0 indicate the best 
algorithm for each of the values of p. To establish a fair 
basis for comparison, we fixed the various parameters in 
the expressions above (e.g., σ in SPSA and SAN, ρ for the 
ES, etc.) so that the algorithms produced identical 
efficiency results for p = 1 (requiring n = 28 measurements 
to achieve the objective outlined above). These parameters 
do not explicitly depend on p. We then use these parameter 
settings as p increases. 
Table 7.1. Ratios of loss measurements needed relative to 

best algorithm at each p for 1 ≤ p ≤ 10 
 p = 1 p = 2 p = 5 p = 10 

Rand. Search 1.0 11.6 8970 2.0×109

SPSA 1.0 1.5 1.0 1.0 
SAN 1.0 1.0 2.2 4.1 
ES 1.0 1.9 1.9 2.8 

Table 7.1 illustrates the explosive growth in the relative 
(and absolute) number of loss evaluations needed as p 
increases for the random search algorithm. The other 
algorithms perform more comparably, but there are still 
some non-negligible differences. For example, at p = 5, 
SAN will take 2.2 times more loss measurements than 
SPSA to achieve the objective of having  inside S(θ*) 
with probability 0.90. Of course, as p increases, all 
algorithms take more measurements; the table only shows 
relative numbers of function evaluations (considered more 
reliable than absolute numbers).  

kθ̂

This large improvement of SPSA and SAN relative to 
random search may partly result from the more restrictive 
regularity conditions of SPSA and SAN (i.e., for formal 
convergence, SPSA assumes a several-times-differentiable 
loss function) and partly from the fact that SPSA and SAN 
work with implicit gradient information via gradient 
approximations. The performance for ES is quite good. The 
restriction to strongly convex fitness functions, however, 
gives the ES in this setting a strong structure not available 
to the other algorithms. It remains unclear what practical 
theoretical conclusions can be drawn on a broader class of 
problems.  
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